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Abstract

A simple semi-active structural vibration control based on switching the system equivalent stiffness
between two distinct values is proposed. When the system is moving away from its equilibrium state, the
stiffness of the system is set to the higher value, and when it returns to its equilibrium, it is set to the lower
value. Termed here “‘switched stiffness”, this vibration control method leads to change in the stored
potential energy, which results in reduced total energy of the system. The switched stiffness can be typically
implemented using a bi-stiffness spring setting, with the resulting relay-type control logic based on the
position and velocity feedback. Unavailability of velocity sensors makes it difficult to implement this simple
control logic. Although, numerical differentiation of the position signal can be utilized to acquire the
velocity, but intervention of noise and the resulting signal phase-lag due to the filters used may degrade the
vibration suppression performance. Hence, a novel output feedback variable structure observer, robust in
nature, is used to estimate the required velocity signal. A single degree of freedom setup is considered to
experimentally implement the switched stiffness concept proposed here. Simulations and experimental
results demonstrate the effectiveness of the vibration suppression method proposed here.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Active vibration control concepts are best suited for suppressing the structural vibrations of
dynamic systems. However, their energy inputs are typically high and may lead to system
instability under certain conditions. Intervention of noise and the phase lag, introduced by filters
used to remove the ever-present noise, have also been notorious problems that are faced
frequently in the domain of vibration control. Even a robust active control could lead to
instability because of the phase lag produced by noise filters [1]. Passive vibration control
methods, on the other hand, are less effective in vibration control with slower response time, but
are relatively simpler and have much more improved stability characteristics compared to active
systems [2]. There is always a trade-off between active and passive vibration control methods,
which has led to the development of hybrid methods such as adaptive passive and semi-active
configurations [3,4].

A recent development in the area of vibration control utilizes the concept of switched stiffness
[5-8]. The switched stiffness method is a semi-active vibration control method, where the energy
of the system is dissipated by changing the values of the spring stiffness. A simple control law,
based on the position and velocity feedback, is designed to switch the stiffness of the spring in
order to increase the energy dissipation from the system. The spring should possess two distinct
stiffness values, referred to as high stiffness (for the higher value) and low stiffness (for the lower
value). The high stiffness state is used when the system is moving away from its equilibrium such
that the potential energy stored in the system is maximized. The spring is switched to low stiffness
state when the system has reached its maximum stored potential energy, which occurs when the
system has attained its maximum amplitude of vibration for that halfcycle. Thus, the stiffness
switching results in the loss of some of the potential energy. The energy is dissipated in the system
by this loss of potential energy. The reduced potential energy is then converted to kinetic energy,
that is lower than the kinetic energy during the previous cycle due to the lost energy by changing
the spring stiffness.

This energy dissipation method can be used for vibration suppression of transient and
continuously excited systems. However, limitations for implementation of this type of vibration
attenuation are the velocity measurement requirement of the system under study and availability
of a bi-stiffness spring configuration in practice. Expensive velocity sensors and noisy
differentiators make the first limitation even more noticeable. This problem can be overcome
by implementing an output feedback velocity observer developed by Xian et al. [9]. A bi-stiffness
spring may be designed, but to the best knowledge of the authors such commercial setup do not
exist in practice.

In this paper, a switched stiffness control strategy is proposed for vibration suppression of
mechanical systems. Past research in vibration control using variable stiffness also prove that such
concept to be effective [10-13]. A single degree-of-freedom (sdof) system is considered here to
demonstrate the concept. Numerical simulations are performed to analyze the behavior of the
system. Experimental validation of the concept using a rectilinear plant is also presented to verify
the numerical results. The experimental setup consists of an excitation source and a mass—spring
system. The spring is modified using an external element and a motor to take up two stiffness
values according to the control law. The control objective here is to suppress the vibration
transients in the system in the presence of the excitation and disturbances. The controller



260 A. Ramaratnam, N. Jalili | Journal of Sound and Vibration 291 (2006) 258-274

developed here is a semi-active controller utilizing stiffness switching concept. The position of the
system is fed back using an encoder, while the velocity of the system is estimated using an output
feedback wvariable structure observer [9]. The results obtained by switching the stiffness
demonstrate that the system residual vibrations can be suppressed effectively.

The concept of switched systems can be easily implemented using piezoelectric materials, as
these materials possess the ability to change their equivalent effective stiffness according to the
type of circuit connection [5-8,14]. More specifically, when connected in an open circuit, the
piezoelectric material exhibits a particular stiffness and when short-circuited, it exhibits different
value, typically lower stiffness. This ability of the piezoelectric materials to change their stiffness is
due to their ability to change their mechanical compliance, caused by changes in their electrical
impedance when connected in open or short circuit [6].

The rest of the paper is organized as follows. In the immediately following section, the switched
stiffness vibration control concept is explained along with the control law and stability analysis.
Section 3 discusses real-time implementation of the switched stiffness concept using velocity
observer, followed by a modified velocity observer derivations. Numerical results are provided in
Section 4, with the experimental results and discussions given in Section 5. Section 6 summarizes
the paper and provides future directions.

2. Switched stiffness vibration control concept

Switched stiffness vibration control method can be best explained by taking a sdof mass—spring
system as shown in Fig. 1. The governing equation is simply given by

mj(1) + k(D)y(t) = f(0), (1)

where y(7) is the system output (i.e., the signal that is to be attenuated), m is the mass, k(¢) is the
stiffness and f(¢) is the external force acting on the system. The spring is assumed to possess a
step-variable stiffness setting in the sense that it can be switched between two distinct values,
namely high and low stiffness values. As the external force f(#) causes the mass to move away
from its equilibrium position, the stiffness of the spring k(7) is kept at the high value. The
maximum potential energy at maximum mass displacement is simply %khighyfnax. At this point

? (1)

f(t) f

k(t)

|
/.

Fig. 1. The sdof mass—spring system with variable stiffness.
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(Vmax), the stiffness is switched to low value and kept at this value until the mass reaches the
equilibrium point again. Therefore, the potential energy at y.,.x becomes %klowyfnax. The loss in
potential energy can be given as %Akyfmx, where Ak = kpigh — Kiow-

The decrease in potential energy given by %Akyfnax will consequently result in decrease in
converted kinetic energy, thereby introducing energy dissipation in the system. The stiffness is
then switched back to the high value when the system moves away from its equilibrium, thus
switching stiffness from low to high in a periodic manner to gradually dissipate system energy.
The sdof system is no more conservative due to the dependence of the stiffness with time. Hence,
the system becomes a parametric system (with quasi time-varying parameters) and the work done
by such non-conservative spring force is the means of energy dissipation [15].

2.1. Control law for switching stiffness

A heuristic control law was suggested to essentially switch the stiffness values through a hard
switching or on—off (relay) control [5]. The control law is based on the position of the system with
respect to the equilibrium state. The control law can be stated as

k(t) = knign for yp=0,
k(t) = kiow for yy<O. 2)
The control law can also be expressed in the following more compact form:
_ (knigh + kiow) | (Knigh — Kiow)sgn(yy)

k(f) = 5 + 5 for kiow <k <knigh. 3)
Deﬁning, K] = (khigh + klow)/z and Kz = (khigh — k]ow)/z, 1t yields
k(t) = K1 + Ky sgn(yy). “4)

For numerical simulations, the spring stiffness value is changed such that the potential energy is
dissipated at maximum deflection, resulting in the *‘step-down” of total system energy, and hence,
suppressing the displacement as shown in Fig. 2. The amount of dissipated energy over a
particular period is proportional to the difference between high and low values (Ak as explained
earlier in this section). When the stiffness is switched as per control law given in Eq. (4), it results
in significant vibration suppression [6].

2.2. Lyapunov-based stability analysis of the switched stiffness method

Theorem 1. The homogenous version of the quasi time-variant linear system (Eq. (1) with f(t) = 0)
with the variable-rate stiffness k(t) given by Eq. (4) is globally asymptotically stable in the sense that
y()—0as t— oo.

Proof. Choosing the following Lyapunov candidate function:

1 1K,
V=22
57 +2my, ®)
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Fig. 2. Illustration of the stiffness switching concept for a sdof system with m = 1.5kg, kjow =220N/m and
khigh = 300 N/m. In (c); dashed—dotted lines (-.-.-.) represent kinetic energy, dashed lines (- - -) represent potential
energy, and solid lines (—) represent total energy.

noting its positive definiteness, differentiating it with respect to time and using the homogenous
version of Eq. (1), it can be shown that

. K
V= (y +—1y>y'.
m

Eq. (6) can be further reduced to

.__& ]
V= m‘yy{.

(6)

(7

Observing that V' is negative semi-definite, J is radially unbounded, i.e., V- o0, as [[y|| — oo,
then, using the Invariant Set Theorem [16], it can be proven that the system given by Eq. (1) with
variable spring k(z) is globally asymptotically stable. The phase portrait shown in Fig. 3
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Fig. 3. Phase portrait of the mass—spring system of Fig. 2 with an arbitrary initial velocity indicating system asymptotic
stability.

demonstrates this fact which results in a globally asymptotically stable equilibrium point without
any limit cycles. [

3. Real time implementation of switched stiffness concept using velocity observer

The control law (4) can be implemented by measuring the position and velocity of the
mass—spring system. However, due to the unavailability (or complication of implementation) of
velocity sensors, velocity cannot be measured directly, thus hindering the implementation of the
control law. In order to overcome this dilemma, a simple solution would be to measure the position
and numerically differentiate it to find the required velocity signal. A classical problem associated
with this approach is the resulting noise accompanying the differentiated signal leading to erroneous
results. To prevent this, a recent robust velocity observer scheme can be utilized to observe the
velocity and help implement the control law as developed by Xian et al. [9] and briefly explained
next. This observer may also be considered as an inexpensive replacement for the velocity sensors.

3.1. Velocity observer design overview

This section briefly explains the variable structure velocity observer introduced by Xian et al. [9]
for a class of unknown nonlinear systems of the form

="y, »)+ Gy, u, (8)
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where y(7) € R”" is the system output, u(z) € K" is the control input, i(y, y) € R" and G(y, y) € R" are
system nonlinear functions. The following assumptions are made in order to design the observer:

e The system states are always bounded.
® /i(y,y) and G(y, ) are first order differentiable such that their derivatives exist.
e The control input u(?) is first order differentiable.

If f(t) is the observed velocity, then the error due to the velocity observation can be given as

y=y-J )
Therefore, to observe velocity accurately, the error should go to zero, i.e., y — 0, as t— 0. In
order to achieve this, a second-order filter whose structure is motivated by the Lyapunov-type
stability analysis is adopted as follows to generate the needed velocity as

3 =p+ Koj, (10)

p = K sgn(p) + K»J, (11)

where p(#) is an auxiliary variable, sgn(-) denotes the standard signum function, Ky, K; and K, are
positive-definite constant diagonal matrices. The stability analysis using this observer can be
performed. However, we prefer not to add additional details here and refer the interested readers
to Ref. [9] for more information.

3.2. Modified velocity observer design for switched stiffness

In order to prove the stability of the observer based switched stiffness system, the observer with
the structure given in Egs. (10) and (11) are modified to satisfy the stability criterion as follows:

9 =p+ Ko, (12)

. 2K, . K N
p=———=ysgn(yy) ——y+ Kooj, (13)
m m
where K, and K, are positive-definite constant diagonal matrices. The stability analysis of this

structure is explained in next.

3.3. Lyapunov based stability analysis of switched stiffness method with modified velocity observer

Theorem 2. The homogenous version of the quasi time-variant linear system (Eq. (1) with f(t) = 0)
with the variable-rate stiffness k(t) given by control law (4) and velocity observer system (12) and (13)
is globally asymptotically stable in the sense that y(t)—0 as t— 0.

Proof. As explained in Section 4, we observe that Egs. (12) and (13) give the configuration of the
observer and can be re-written as

$=p+ Koy, (14)
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p="Vo+ KpJ, (15)
where
2K, . K,
Vo=——=ysgn(yy) ——. (16)
m m
Differentiating Eq. (14) and with the help of Eq. (15), we get,
¥ =Vo+ Koj + Koij. (17)
Considering y = j — j/ and the homogenous version of Eq. (1), Eq. (17) can be written as
.1 o
y= —%k(l) — Vo — Koy — Ko1 . (18)
To prove the stability, we select a Lyapunov candidate as
1 1K, 1.2 1
V=_p? 42—+ -5 +-Kpi” 19
3V 3V 5V 5 Koy (19)
Differentiating Eq. (19) and substituting Eq. (18) yields,
. 2K2 X ~ Kz ~ ~ 2 Kl 2 X
V =——=yysgn(yy) — —yysgn(yy) — Koiy- ——yy — Voy, (20)
m m m
. K A A 22
= V=" ypsen(d) - Ko @21

As seen, V(y) is negative semi-definite, V(y) is radially unbounded, i.e., ¥(y)— o0, as H yH — 00
and

1 _ _ .
j == y{Ri+ Rz sen(f)}. 22)

Then, using the Invariant Set Theorem [16], it can be proven that system (1) with controller (4)
and velocity observer system (12) and (13) is globally asymptotically stable.

4. Simulation result using velocity observer for sdof system

The switched stiffness control concept is implemented using the position and the estimated
velocity via the output feedback observer explained earlier. The sdof system in Section 2 is
considered with the velocity observer presented in the preceding section for the simulation.
Appropriate values for the control gains Ky; and K, are selected as listed in Table 1. The results
for a given initial velocity are obtained as shown in Figs. 4 and 5. The velocity observation error
goes to zero (see Fig. 5), as a result of which the observed velocity corresponds to the actual
velocity. It must be noted that although the observer does not yield accurate results for some
cases, the direction (sign) of the observed signal and the actual signal are in agreement. Such
agreement will be more than enough for implementing the switched stiffness control law proposed
here. Notice, the control law (4) requires accurate measurement of the velocity signs and not the
actual velocity itself.
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Table 1
System parameters of the mass—spring system
System parameter Value Unit
Mass 1.5 kg
High spring stiffness 300 N/m
Low spring stiffness 220 N/m
Ko 2300 -
Koo 2500 _
0.5 T
(@)
0 A
05 : : : :
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0.5 T
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Fig. 4. Velocity observer performance for the switched stiffness method implemented on the sdof system of Fig. 1: (a)
position y(¢) in [m]; (b) observed position p(¢) in [m]; (c) velocity y(¢) in [m/s]; and (d) observed velocity p(¢) in [m/s].

5. Experimental verification of switched stiffness concept

The sdof system with switched stiffness control strategy is considered here for experimental
verification. This section presents the experimental setup, implementation of the switched
stiffness, and finally experimental results and discussion.

5.1. Experimental setup

A rectilinear plant for multi degree of freedom (mdof) systems is reduced to a sdof system as
shown in Fig. 6, [17]. A DC brushless motor excites the mass—spring system. Position feedback is
obtained by using an encoder as shown in Fig. 6. The original spring used in the system is
modified to take two stiffness values by adding a DC motor controlled arm designed based on a
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Fig. 5. Position and velocity observation error of the results in Fig. 4.
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Fig. 6. Experimental setup of the switched stiffness implementation.

similar idea reported by Oda et al. [18]. As shown in Fig. 7, the arm is used to hold the spring at a
position making a few active coils inactive, thereby increasing the stiffness (Fig. 7b). The arm is
then released to make the spring fully functional, yielding low stiffness configuration (Fig. 7a).
Experimental data interfacing is obtained using dSPACE®™ data acquisition (DS 1104) and
controller board. Impulse force is applied to the system using the host computer and an amplifier
that drives the DC brushless motor. The experimental setup is shown in Fig. 6, with the
experimental parameters the same as numerical simulations listed in Table 1.

5.2. Arrangement for switching the stiffness

As explained earlier, one of the practical difficulties in the switched stiffness concept is to have a
bi-stiffness spring possessing two stiffness values. Shape memory alloys, electrorheological fluids,
magnetorheological fluids, leaf springs and piezoelectric crystals can be used to achieve variable
stiffness [10]. However, a simple arrangement extended from an existing design is used here to
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Arm - retracted position Arm-extended position

AL IS

Fig. 7. (a) Low stiffness configuration implementation; (b) high stiffness configuration implementation.

change the stiffness of the spring [18]. The stiffness of a helical spring, which is used in our
mass—spring system, depends on the number of active coils present in the spring, which can be
represented by the following equation;
d*G

k= DN (23)
where d is the diameter of the wire, D is the diameter of the coil spring, N is the number of active
spring coils and G is the shear modulus. By changing the number of active coils, the stiffness of the
spring can be accordingly changed. By using the external arm design, which runs into the spring,
the number of active coils can be changed. The initial design of the arrangement consisted of two
arms for effective blocking of coils, but this arrangement resulted in chattering due to lack of
synchronization. The effective new design consists of one single arm, which is rotated 180° to
block a few active coils corresponding to the high stiffness (Fig. 7b). During low stiffness
configuration (Fig. 7a), the arm is retracted inside the spring. The arm extends outside or
contracts inside the spring according to the control law with the help of a DC motor and two
nylon gears (termed spring control in Fig. 6). Fig. 7 depicts these low stiffness and high stiffness
arrangements.

5.3. Experimental results

The experiments were performed for low stiffness, high stiffness and switched stiffness
configurations. Fig. 8 depicts the high-level Simulink® block diagram of the switched stiffness
implementation wherein position feedback acquisition, velocity signal observation and DC motor
controller for the arm are highlighted. The experimental results are shown in Figs. 9 and 10. As
seen from Fig. 9, the sdof oscillator response dies out after some time due to the ever-present
structural damping in the system. The amplitude of the low stiffness is higher than that of high
stiffness.

The switched stiffness is implemented through obtaining position feedback using the encoder,
estimating the velocity using the variable structure observer and implementing the control law
(given by Eq. 4). The control law gives an output signal that will activate the DC motor to operate
the arm in order to switch the stiffness. The switched stiffness results in less settling time as
expected (see solid lines in Fig. 9). The results shown in Figs. 9 and 10 are obtained using the
velocity observer to estimate the velocity. The bottom graph of Fig. 10 shows the control action to
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Fig. 8. High-level Simulink block diagram of the position feedback and velocity observer.
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Fig. 9. Experimental response of the sdof system for different stiffness values; dotted lines (.....) represent low stiffness,
dashed lines (- - - -) represent high stiffness, and solid lines (—) represent switched stiffness.
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Fig. 10. Experimental implementation results using velocity observer: (a) position y(7) in [mm]; (b) observed position
P(¢) in [mm]; (c) velocity y(¢) in [mm/s]; (d) observed velocity y(¢) in [mm/s]; and (e) switching control in [V].

switch the stiffness. This control action operates a relay, which switches the DC motor to change
the arm’s position (the DC motor cannot be directly operated by the computer due to output
current limitations).

In order to better compare the controlled system with uncontrolled case (either low or high
stiffness), the area under the curve in Fig. 9 and their corresponding plots are shown in Fig. 11. It
is noted that the switched stiffness has less “error area’ than the low stiffness and high stiffness
curves (area of 1147 compared to low stiffness of 2066 and high stiffness of 1263). The high
stiffness results seem closer to the switched stiffness because of the time delay and ineffective
switching mechanism. However, the simulation results of the system when utilizing experimental
parameters (damping assumed to be viscous for simplicity) yield better results for the switched
stiffness case as shown in Fig. 12. The main reason for the existence of a disparity between these
numerical results (Fig. 12) and experimental results of Fig. 9 is due to the experimentally
calculated equivalent viscous damping coefficients for the low stiffness and high stiffness settings.
This is due to extra dynamics that come into picture by adding an external arm in the spring to
simulate high stiffness. Just for consistency in the reported results, one of the damping coefficients
has been chosen for simulation of all the three cases (high stiffness, low stiffness and switched
stiffness). Moreover, the impulse used in the simulations and the impulse used in the experiment
may not produce the same results or cannot be implemented similarly due to the actuator
limitation. It must also be noted that our intention for providing simulation results using
experimental parameters is not to compare the experimental results with the simulations. Instead,
this plot (Fig. 12) is provided to prove that the switched stiffness concept can be used more
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Fig. 11. The “error area” under the response curve (y(¢)) for different stiffness configurations: (a) low stiffness with area
of 2066; (b) high stiffness with area of 1263; and (c) switched stiffness with area of 1147.
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Fig. 12. Simulation results of system output (y(¢)) when utilizing experimental system parameters; dotted lines (.....)
represent low stiffness, dashed lines (- - - -) represent high stiffness, and solid lines (—) represent switched stiffness.

effectively to suppress vibrations (i.e., as another case of numerical simulation with damping in
the system).

The FFT of the experimental responses is shown in Fig. 13, where the lower amplitude ratio of
the switched stiffness configuration (when compared to low and high stiffness cases) is to be
noted. The switched stiffness experimental results using numerical differentiation for the velocity
signal requirement is also shown in Fig. 14. It is seen that, both the numerical differentiation and
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Fig. 13. Experimental frequency domain response of the system (FFT{y(¢)}) for different stiffness values; dashed lines
(- - - -) represent low stiffness, dashed—dotted lines (-.-.-.-) represent high stiffness, and solid lines (—) represent switched
stiffness.
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Fig. 14. Comparison of switched stiffness method when using velocity observer and numerical differentiation for
system output y(¢); solid lines (—) represent observer results, dotted lines (.....) represent results obtained using
numerical differentiation.

the observer give similar results. However, this may not be the general case when position
feedback is given through other types of position sensors such as laser displacement sensors (the
noise levels are much higher compared to optical encoders). Thus, the simulation and
experimental results indicate green lights for implementing the switched stiffness control concept
for effective suppression of vibrations.
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6. Conclusions

The concept of switched stiffness was explained using a simple sdof system. Through switching
the stiffness, depending on the position of the system with respect to the equilibrium state, energy
dissipation was maximized and considerable vibration suppression was achieved. Real-time
implementation difficulty with regard to velocity measurement was overcome using an output
feedback variable structure observer. Experimental validation of the vibration attenuation using
switched stiffness technique with the velocity observer was also demonstrated. These results
provided here could pave the way for semi-active vibration control of systems using piezoelectric
materials, which can easily change their stiffness according to the type of circuit connection.
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